
DOI: 10.1007/s10955-005-6797-4
Journal of Statistical Physics, Vol. 120, Nos. 3/4, August 2005 (© 2005)

Reductions of Hidden Information Sources
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In all but special circumstances, measurements of time-dependent processes
reflect internal structures and correlations only indirectly. Building predictive
models of such hidden information sources requires discovering, in some way,
the internal states and mechanisms. Unfortunately, there are often many possible
models that are observationally equivalent. Here we show that the situation is not
as arbitrary as one would think. We show that generators of hidden stochastic
processes can be reduced to a minimal form and compare this reduced represen-
tation to that provided by computational mechanics – the ε-machine. On the way
to developing deeper, measure-theoretic foundations for the latter, we introduce a
new two-step reduction process. The first step (internal-event reduction) produces
the smallest observationally equivalent σ -algebra and the second (internal-state
reduction) removes σ -algebra components that are redundant for optimal predic-
tion. For several classes of stochastic dynamical systems these reductions produce
representations that are equivalent to ε-machines.

KEY WORDS: Stochastic process; state reduction; measure theory; computa-
tional mechanics; Markov transition kernel; minimal generator; hidden infor-
mation source.

1. INTRODUCTION

Experiment and simulation often produce voluminous amounts of data –
data that the scientist or analyst attempts to understand by building pre-
dictive models. The best models, however, do more than simply predict the
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data. In the best of circumstances, models also capture the internal struc-
tures, active degrees of freedom, correlations, and so on that underlie the
observations. In this way modeling enhances understanding and leads to
new insights about the forces that shape our world.

Unfortunately, measurements generally are only indirect indicators of
internal structure. This makes the process of model building difficult and
often highly nonunique. One would hope that there is some principled
approach to model building and inference that would guide us in inferring
structural properties from data. The possibilities for such an approach are
bounded by two extremes: (i) Are there formal constraints that guide the
discovery of good representations? (ii) Can the observations themselves tell
us which representation to use or, perhaps, how to refine an existing model
or to correct an initially faulty hypothesis?

These days, however, the problem of building useful predictors of hid-
den information sources is compounded by the fact that the systems stud-
ied are quite complicated, in the sense of consisting of many components,
for example. Genomic, geophysical, neurobiological, Internet traffic, and
World Wide Web systems easily come to mind as complex in this sense
and as particularly desirable to model. This very practical observation, in
turn, argues even more forcefully for a principled approach to discover-
ing and describing hidden structure. That is, we now need to understand
the process of model building for such complicated systems well enough
to teach machines how to do it.

Here, building on previous work,(1–3) we address one piece in this
puzzle – what we call the Forward Modeling Problem: Given a generator
of an observed stochastic process, Is there a minimal, optimal predictor of
it? In answering this question positively, we have two goals. The first, natu-
rally enough, is to articulate the notion of minimal generators of observed
stochastic processes and show that they exist. The second, though, is to
lay more rigorous and broader foundations than currently available for the
Reverse Modeling Problem – Given observations, can one reconstruct the
hidden mechanisms?

1.1. Background

Reviewing a little background on previous work will help put the
current formal results in perspective and motivate our development. We
then comment on closely related work in which similar questions arise, but
which take different approaches to structural inference. Then, after outlin-
ing our approach, the mathematical development begins.

If we are to build a predictive model of an information source that
produces a time series, the most basic assumption to make is that the
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source, at each moment of time, is in some “state”. Over time, the source
transitions from state to state. As we noted already, though, in the gen-
eral setting we do not have access to these states, we only have indirect
information about them – information that we call measurements. So the
modeling question reduces to the following. Given that all we have are
sequences of observations, what kind of “state” should be formed from
them and used for modeling? The answer is rather straightforward, and
seemingly tautological: the “states” that we should use are those that are
effective for prediction.

This is the starting point for how computational mechanics (1–3) builds
optimal models. One of the notable results in computational mechanics,
though, is that the representation, which emerges from focusing on states
that are effective for prediction, captures all of a process’s internal causal
structure. In fact, computational mechanics shows that there is a preferred
representation for modeling, which is called an ε-machine.

To start, we consider a time series of observations
↔
s = . . . , s−2, s−1, s0,

s1, . . . , in which the individual measurements are symbols in a finite alpha-
bet: si ∈�. An ε-machine consists of states – called causal states and denoted
S – and transitions between them. The causal states are defined as those sets
of histories

←
s t = . . . , st−3, st−2, st−1 that are equivalent for predicting the

future
→
s t= st , st+1, st+2, . . . . That is, two histories –

←
s and

←
s
′

– are associ-
ated with a given causal state, when the sets of possible futures “look” the
same having seen them. More precisely, this modeling principle defines an

equivalence relation ∼ over the set
←
S of histories:

←
s ∼←s ′ if and only if P(

→
s |←s )=P(

→
s |←s ′) , (1)

where in the conditional distribution equality we mean that each individ-
ual future is given the same probability. The resulting equivalence classes
are the causal states.

From this, one can show that the ε-machine for an information
source is the optimal, minimal, and unique predictor of an information
source. In the language of mathematical statistics, the ε-machine is a min-
imal sufficient statistic for the observed stochastic process produced by an
information source. More than being a good predictor that is small, the
semigroup determined by the causal states and transitions captures all of
the information source’s internal structure – regularities, symmetries, and
so on. And, due to minimality, one can show that the statistical complex-
ity Cµ – the “size” of an ε-machine measured as the Shannon entropy of
the set of causal states – measures the amount of historical information
that the source stores. That is, ε-machine minimality is not only helpful
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in terms of compact representations, but it is essential, since Cµ gives one
a quantitative way to say how structured a hidden information source is.

Although the emphasis here is on the mathematical foundations
of computational mechanics, we should note that it has been used to
analyze structural complexity in a wide range of information sources.
These include cellular automata,(4) one-dimensional maps,(1,5) and the
one-dimensional Ising model,(6,7) as well as several experimental sys-
tems, such as the dripping faucet,(8) atmospheric turbulence,(9) geomag-
netic data,(10) complex materials,(11,12) and molecular dynamics.(13,14)

In the present work we begin to address the problems posed in
Appendix H.3 of ref. 3 on founding computational mechanics more fully
on stochastic process and measure theories by considering one part of
the Forward Modeling Problem noted above. The results here differ
from previous work on computational mechanics in two ways. First, the
development is mathematically rigorous, in the sense that we use measure
theory to explore the notion of minimal representations, which underlies
ε-machines. What is novel compared to stochastic process theory is that
we ask for minimal representations of a stochastic process and express
them in terms of the minimal σ -algebra . We also introduce two new com-
ponents of the minimization procedure – internal-event and internal-state
reduction – which complement the existing concept of causal-state reduc-
tion for ε-machines. Analyzing the Forward Modeling Problem in this way
allows us to draw parallels with the computational mechanics development
of ε-machines, comparing and contrasting the various kinds of reduction
method. We show that in a number of cases these reductions are equiva-
lent and so provide an extension of the original concept of an ε-machine
to a broader class of processes than previously possible.

1.2. Related Work

The modeling questions that we address here, and that are also
addressed by computational mechanics, do not arise in a vacuum. Here
we briefly mention related work that is motivated by similar concerns of
the equivalence of observed processes and of structural inference, but that
adopts different approaches. In a later section, when we turn to discuss
our results, we broaden the discussion of related work to mention addi-
tional areas in which one might find useful applications.

One of the first attempts to address the difficulties of analyzing
(known) hidden information sources is that of ref. 15. The problem,
which comes under the heading of the identifiability of functions of
Markov chains, was to calculate the source entropy rate, given an inter-
nal finite-state Markov chain, the states of which are observed with a
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probabilistic measurement function. (Note that today one refers to this
class of information sources as hidden Markov models.)(16,17) There it was
shown that in the majority of cases there are no closed-form expressions
for the entropy rate. A corollary of this result is that one needs to deter-
mine the effective states (and these might be infinite in number) in order to
calculate a property as basic as the entropy rate – that is, simply attempt-
ing to determine how random a finite-state information source is. This
contrasts, of course, with Shannon’s closed-form expression for finite Mar-
kovian sources.(18) We take ref. 15’s result as one of the first indications
of the nontrivial nature of inferring the structure of hidden information
sources. Another testimony to this difficulty is that the problem of identi-
fiability itself, though posed by Blackwell and Koopmans in the late 1950s,
was not solved for almost 40 years.(19) Moreover, the existence of minimal
representations of these same hidden sources was not established until a
few years later still.(20,21)

Similar concerns about inference, representation, and causality are
found in the fields of causal inference,(22) graphical models,(23) and non-
linear time series analysis and state-space reconstruction.(24) Most of the
work in these areas proceeds by assuming a given set of observed and hid-
den variables (and their connectivity) and then asks for efficient algorithms
to estimate various kinds of marginal, conditional, and joint distributions.
The goals are to infer from the latter the relationship between these vari-
ables and so, on that basis, to draw structural conclusions. That is, in these
cases one begins with strong structural priors about the internal architec-
ture of a hidden information source in order to initiate analysis. (Indeed,
such priors are often a useful and necessary starting point for modeling.)
Notably, only the last of these fields concentrates on temporal dynamics
and sources with memory. Here we are interested in both architectural and
temporal properties of memoryful hidden sources and wish to understand
these employing a minimum of structural priors.

1.3. Outline

The principle focus of the following is to develop the notion of a min-
imal reduction of a given (hidden) Markov process. To do this, the devel-
opment is organized as follows. In the next section we characterize the
(rather general) class of stochastic processes – hidden information sources
– in a way that respects the distinction between a process’s internal struc-
ture and the measurements, which indirectly reflect the internal state, avail-
able to an observer. This then allows us to define generators of stochastic
processes as Markov transition kernels and so state the problem of obser-
vationally equivalent generators. The succeeding section establishes how
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different generators can be mapped onto each other while maintaining
observational equivalence. Then, in the next section, we address the cen-
tral problem and show that one can maximally reduce the representation
of a process’s internal structure – it’s generator – while still producing the
same observed stochastic process. The reduction is achieved in two steps
– the first, called internal-event reduction, produces the smallest σ -alge-
bra and the second, internal-state reduction, reduces the internal structure
further, removing components that are not necessary for optimal predic-
tion. During the development we illustrate the ideas with several examples
that show how the new formulation extends the range of applicability of
computational mechanics.

2. GENERATORS OF STOCHASTIC PROCESSES

An information source is a process that at each time step emits an
output or measurement symbol. Only the probabilistic nature of the out-
put process is specified in order to describe the observed information pro-
cessing. Indeed, often in information theory a source is mathematically
described as a stochastic process without concrete specification of inter-
nal mechanisms. In many theories of complexity, however, one often uses
explicitly structural notions (e.g., automata) from the theory of discrete
computation(25) to describe the resources required to reproduce or model
an observed process. So that we will have a mathematical model that both
captures the observed stochastic process and allows for a range of internal
structures, we adapt the concept of finite-state automata to the setting of
stochastic processes as follows; cf. Refs. 26 and 17.

We consider a finite set Q of internal states of the system and also a
finite set � of output states, which are the observed symbols. The internal
structure is modeled in various ways. First, it can be specified by a deter-
ministic (det) transition map:

Tdet:Q→Q×�, x �→Tdet(x)= (y, s). (2)

This map assigns to each internal state x∈Q the next internal state y and,
at the same time, also the next output symbol s ∈�. Figure 1 illustrates
the transition structure.

A nondeterministic (non) version of such a machine (without input)
can be introduced as a map

Tnon:Q→2Q×�, x �→C. (3)
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Fig. 1. The transition structure of a deterministic machine that generates a stochastic
output process.

This machine assigns to each internal state x a set C of possible next-state
pairs (y, s). This extends the deterministic machine Tdet of Eq. (2), which
can be interpreted within the nondeterministic framework as follows:

Tnon(x) :={Tdet(x)}∈2Q×�.

Finally, a further extension is provided by the following probabilistic
(pr) interpretation of a nondeterministic machine Tnon:

Tpr:Q×2Q×�→ [0,1],

where

(x,C) �→Tpr(x,C) := |C∩Tnon(x)|
|Tnon(x)| .

The function Tpr satisfies

Tpr(x,C1	C2)=Tpr(x,C1)+Tpr(x,C2)

and

Tpr(x,Q×�)=1.

Therefore Tpr is a Markov transition kernel on finite symbols.
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This interpretation allows for an extension of finite-state machines
to machines given by general Markov transition kernels that are not
restricted to finite symbols, for example. Here, we allow the internal states
to be described by an arbitrary measurable space (Q,Q). Again, Q is the
set of internal states or, in terms of probability theory, the set of (internal)
elementary events. The σ -algebra Q represents all internal events of inter-
est. The output is modeled by a measurable space (�,D), too. A machine
is now considered to be a Markov transition kernel:

T :Q× (Q⊗D), (x,C) �→ T (x,C).

More precisely, T is assumed to satisfy the following conditions:

1. For all x ∈Q, the function T (x, ·) is a probability distribution on
Q⊗D.

2. For all C ∈Q⊗D, the function T (·,C) is Q-measurable.

Finally, we assume that all measurable spaces (Q,Q) – the measurable
space of internal states or hidden events – and (�,D) – the measurable
space of visible events – are Polish spaces.

We should point out that the well established notion of machines
that manipulate finitely many (or a countable number of) symbols may
seem more appropriate for implementations in physical systems than our
broad approach to computation using general Markov transition kernels.
Putting the natural ideas of computation into the probabilistic setting,
however, allows us to employ measure-theoretic concepts and techniques.
This approach turns out to be very useful in understanding the relations
between the probabilistic nature of the observed processes and the under-
lying internal computational structures. In particular, problems concerning
minimality properties of machines can be handled in an efficient way and
for a broader class of processes than those over discrete symbols.

Given a Markov transition kernel T from (Q,Q) to (Q×�,Q⊗D), we
consider it as a temporal “map”, as illustrated in Fig. 2. In order to specify
observable stochastic processes in (�,D), we consider an initial distribution µ

on (Q,Q) and measurable sets B1, . . . ,Bn ∈D. The finite-dimensional margi-
nals Pµ,T

n on (�n,Dn) are obtained by iteration of T , as shown in Fig. 3.
This suggests the following expression for the finite-dimensional marg-

inals of the observed stochastic process:

Pµ,T
n (B1×· · ·×Bn)

:=
∫

Q

∫

Q×B1

· · ·
∫

Q×Bn

T (xn−1, d(xn, yn)) · · ·T (x0, d(x1, y1))µ(dx0).
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Fig. 2. The Markov transition kernel: The internal structure is specified by (Q,Q) and the
observed process by (�,D).

Fig. 3. The finite-dimensional marginals Pµ,T
n on (�n,Dn).

(Throughout the following d(x, y) denotes the differential of two variables.
This notation should not be confused with a distance measure between x

and y.)

Proposition 2.1. Up to equivalence, there is exactly one stochastic
process Yn, n= 1,2, . . . , in (�,D), such that for all n∈N and all Bi ∈D,
i=1, . . . , n,

Pr{Y1 ∈B1, . . . , Yn ∈Bn} = Pµ,T
n (B1×· · ·×Bn) . (4)

We can identify this process or, more precisely, the class of corresponding
equivalent processes, with a probability distribution Pµ,T on (�N,DN).

Proof. This follows from Kolmogorov’s extension theorem.(27)

Definition 2.2. We call a Markov transition kernel T from (Q,Q)

to (Q×�,Q⊗D) a generator and denote it by [(Q,Q), T , (�,D)] or sim-
ply by T . We say that a stochastic process (Yn)n∈N in (�,D) is gener-
ated by T if there exists a probability distribution µ on (Q,Q) such that
Eq. (4) is satisfied for all n∈N and all Bi ∈D, i=1, . . . , n.

Given a stochastic process Y = (Yn)n∈N, a natural question is whether
there always exists a generator that generates Y . The following trivial shift
ansatz shows that this is indeed the case.
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Example 2.3. (Shift Generator). We set Q :=�N and Q :=DN. Con-
sider the shift map s :Q→Q, where

x= (yn)n∈N �→ s(x)= (yn+1)n∈N,

and the projection onto the first coordinate π :Q→�, where

x= (yn)n∈N �→ π(x)=y1 .

Furthermore, we define

T (x,A×B) :=
{

1, if s(x)∈A and π
(
s(x)

)∈B

0, otherwise.

Now, a stochastic process Y = (Yn)n∈N in (�,D) can be identified with a
probability distribution µ on (Q,Q)= (�N,DN). It is easy to prove that T

generates Y by verifying Eq. (4) with initial distribution µ.

The shift generator (Example 2.3) is maximal in the sense that it generates
all processes in (�,D). (It is the mathematical analog of the experimentalist
who reports each and every measurement, without summary, compression, or
explanation.) For an arbitrary generator T , we consider the map

GT :P (Q,Q)→P (�N,DN), µ �→GT (µ).

(Throughout, for a general measurable space (X,X ), P (X,X ) denotes the
set of probability measures on (X,X ).) The image im(GT ) of GT is the set
of processes that are generated by T . Here, we mainly focus on the follow-
ing problem.

Problem Statement 2.4. Given a generator T , can we find a sub-
stitute T ′ for T , which, on the one hand, generates the same set of pro-
cesses, that is im(GT )= im(GT ′), and, on the other, is minimal in some
sense?

From Eq. (4) it follows directly that GT is affine in the sense that for
all µ1,µ2 ∈P (Q,Q) and all 0� t �1,

GT

(
(1− t)µ1+ t µ2

) = (1− t)GT (µ1)+ t GT (µ2) . (5)

This implies that im(GT ) is a convex set, and we have the following
constraint on the solution of Problem 2.4: The set ext

(
im(GT )

)
of the



Reductions of Hidden Information Sources 669

extreme points of im(GT ) represents a “lower bound” for the set Q of
internal states. More precisely, we have the following onto mapping Q→
ext
(
im(GT )

)
:

x �→ δx �→GT (δx).

Thus, we cannot expect to have a notion of minimality that reduces the
internal states more than given by the extreme points of im(GT ).

However, identifying internal states x1 and x2 if GT (δx1)=GT (δx2)

leads to a partition of Q into equivalence classes – classes that are the
analogs of the causal states in computational mechanics. The correspond-
ing canonical projection of internal states to their equivalence classes
is called causal-state reduction, which is intended to reduce the internal
structure in such a way that a given observed stochastic process is still
generated by the reduced generator.

This is different from the intention stated in Problem 2.4, which is
to reduce a given generator without affecting the whole set of observable
stochastic processes. We solve this problem by applying reductions within
a natural category of generators. The morphisms of this category will be
introduced in Section 3. Based on the results there, we present our reduc-
tion procedures in Section 4. We leave to the future discussing causal-state
reduction in terms of morphisms in a larger category than the one studied
here.

3. TRANSFORMATION RULES FOR GENERATORS

We interpret generators as objects of a category and define the mor-
phisms between these objects in the following way: Let [(Qi,Qi ), Ti,

(�i,Di )], i = 1,2, be two generators. A morphism T1→ T2 consists of a
pair (f, g) of measurable maps f :Q1→Q2 and g :�1→�2 such that for
all x ∈Q1, A∈Q2, and B ∈D2 the following commutativity rule holds:

T2(f (x),A×B)=T1

(
x, f−1(A)×g−1(B)

)
. (6)

The diagram in Fig. 4 illustrates this commutativity.
With the product map

(f ×g):Q1×�1→Q2×�2, (x, y) �→ (f (x), g(y)),

we can rewrite Eq. (6) as

T2(f (x),A×B)=T1
(
x, (f ×g)−1(A×B)

)
.
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Fig. 4. Commutativity for generators of equivalent observed processes.

Thus, the property of Eq. (6) is equivalent to

T2(f (x),C)=T1
(
x, (f ×g)−1(C)

)
(7)

with C ∈Q2⊗D2. Here, one has to use the fact that two probability mea-
sures are equal if they coincide on an intersection-closed system of mea-
surable sets that generates the underlying σ -algebra.(27) Rewriting (7) gives
us

T2(f (x), ·)= (f ×g)∗
(
T1(x, ·)), (8)

where (f ×g)∗(µ) denotes the (f ×g)-image of a probability distribution µ.
In the following, a morphism (f, g) is called a transition-preserving map.

In order to define the composition of transition-preserving maps, we con-
sider three generators [(Qi,Qi ), Ti, (�i,Di )], i=1,2,3, and transition-pre-
serving maps (fi, gi) :Ti→Ti+1, i=1,2. Now define the composition as

(f2, g2)◦ (f1, g1) := (f2 ◦f1, g2 ◦g1) .
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We prove that this composition is a transition-preserving map T1→T3 by
verifying Eq. (6):

T3
(
(f2 ◦ f1)(x),A×B

)=T3

(
f2
(
f1(x)

)
,A×B

)

= T2
(
f1(x), f−1

2 (A)×g−1
2 (B)

)

= T1

(
x, f−1

1

(
f−1

2 (A)
)×g−1

1

(
g−1

2 (B)
))

= T1
(
x, (f2 ◦f1)

−1(A)× (g2 ◦g1)
−1(B)

)
.

Proposition 3.1. Let [(Qi,Qi ), Ti, (�i,Di )], i=1,2, be two genera-
tors, and let (f, g) be a transition-preserving map from T1 to T2, and let
µ be a probability distribution on (Q1,Q1). Then, denoting the f -image
of µ by f∗(µ), for all B1, . . . ,Bn ∈D2,

Pf∗(µ),T2
n (B1×· · ·×Bn) = Pµ,T1

n (g−1(B1)×· · ·×g−1(Bn)) .

Proof. With the general transformation rule for integrals we have

Pf∗(µ),T2
n (B1×· · ·×Bn) =

∫

Q1

∫

Q2×B1

· · ·
∫

Q2×Bn

T2(x
′
n−1, d(x′n, y

′
n))×

×· · · T2(x
′
0, d(x′1, y

′
1)) f∗(µ)(dx′0)

=
∫

Q1

∫

Q2×B1

· · ·
∫

Q2×Bn

T2(x
′
n−1, d(x′n, y

′
n))×

×· · · T2(f (x0), d(x′1, y
′
1))µ(dx0)

(transformation rule)
(8)=
∫

Q1

∫

Q2×B1

· · ·
∫

Q2×Bn

T2(x
′
n−1, d(x′n, y

′
n))×

×· · · (f ×g)∗
(
T1(x0, ·)

)
(d(x′1, y

′
1))µ(dx0)

=
∫

Q1

∫

Q1×g−1(B1)

· · ·
∫

Q2×Bn

T2(x
′
n−1, d(x′n, y

′
n))×

×· · · T1(x0, d(x1, y1))µ(dx0)

(transformation rule)
...

...
...

=
∫

Q1

∫

Q1×g−1(B1)

· · ·
∫

Q2×g−1(Bn)

T1(xn−1, d(xn, yn))

×· · · T1(x0, d(x1, y1))µ(dx0)

= Pµ,T1
n (g−1(B1)×· · ·×g−1(Bn)).
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Theorem 3.2. If T1 generates (Yn)n∈N and (f, g) is a transition-pre-
serving map from T1 to T2, then T2 generates (g ◦Yn)n∈N.

Proof. This statement follows directly from Proposition 3.1.

Theorem 3.2 has important and direct implications for two special
cases. In the first case, we fix g as the identity map and, in the second
case, we fix f as the identity map. In these cases, without reference to the
identity maps, f and g are called transition-preserving. The implications
are stated in the following two corollaries.

Corollary 3.3. Let [(Qi,Qi ), Ti, (�,D)], i= 1,2, be two generators,
and let f be a transition-preserving map. Then

GT1 =GT2 ◦f∗.

In particular, this implies

im(GT1)⊆ im(GT2),

where the equality holds if f∗ is onto.

Corollary 3.4. Let [(Q,Q), T1, (�1,D1)] be a generator of a sto-
chastic process (Yn)n∈N in (�1,D1), and let g : (�1,D1)→ (�2,D2) be a
measurable map. Then T2 :Q× (Q⊗D2)→ [0,1] with

T2(x,A×B) := T1
(
x,A×g−1(B)

)

is a generator of the stochastic process (g ◦Yn)n∈N in (�2,D2).

4. REDUCTIONS OF GENERATORS

After having derived some basic transformation rules for generators in
Section 3, we are now ready to concentrate on the main problem, namely
to maximally reduce a given generator T while keeping the set im(GT ) of
generated processes unchanged. The solution of this problem is given by
Theorem 4.5 below and is based on a combination of reduction methods,
which we present in this section. First, we attempt to reduce the σ -algebra
Q of internal events as much as possible, by considering only those events
in Q that are necessary for maintaining the output process unchanged.
The following theorem formalizes this idea.
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Theorem 4.1. (Internal-Event Reduction). Let [(Q,Q), T , (�,D)] be
a generator. Then there exists a smallest σ -subalgebra σQ(T ) of Q with
the property that for all C ∈σQ(T )⊗D, T (·,C) is σQ(T )-measurable. The
generator [(Q,σQ(T )), T̄ , (�,D)] with the restriction T̄ := T |Q×(σQ(T )⊗D)

then satisfies

im(GT̄ ) = im(GT ).

Proof. Let Ai , i∈I , be the family of all σ -subalgebras of Q that sat-
isfy the following condition: for all C ∈Ai ⊗D, T (·,C) is Ai-measurable.
Now define

σQ(T ) :=
⋂

i∈I
Ai .

Then for C ∈σQ(T )⊗D, T (·,C) is Ai measurable for all i ∈ I , and there-
fore also σQ(T )-measurable.

For the reason that trivially

T̄ (idQ(x),A×D)=T (x, id−1
Q (A)× id−1

� (D)),

Corollary 3.3 implies that T and T̄ generate the same set of stochastic
processes.

Theorem 4.1 guarantees the existence of a minimal sufficient σ -sub-
algebra of Q. Now we provide a way to calculate it explicitly in the case
where we have a deterministic internal dynamics f : Q→Q and a visible
process given by a measurement g :Q→�. This case generalizes the shift
generator of Example 2.3.

Theorem 4.2. Let (Q,Q) and (�,D) be two measurable spaces, and
let f :Q→Q and g :Q→� be two measurable maps. Consider the gener-
ator [(Q,Q), T , (�,D)] defined by

T (x,A×B) := 1f∈A,g◦f∈B(x)

=
{

1, if f (x)∈A and g
(
f (x)

)∈B

0, otherwise
.

Then

σQ(T )=σ(g ◦f, g ◦f 2, . . . ). (9)
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Proof. We prove inclusion in each direction separately.
1. We establish that σQ(T )⊆σ(g ◦f, g ◦f 2, . . . ) by showing that for

all C ∈σ(g ◦f, g ◦f 2, . . . )⊗D, T (·,C) is measurable with respect to σ(g ◦
f, g ◦f 2, . . . ). From

σ(g ◦ f, g ◦f 2, . . . )⊗D
= σ

(
(g ◦f, g ◦f 2, . . . )× id�

)

we know that there exists a measurable set C′ ∈DN⊗D with

C= ((g ◦f, g ◦f 2, . . . )× id�

)−1
(C′).

This implies

T (·,C) = 1(f,g◦f )∈C
= 1

(f,g◦f )∈
(
(g◦f,g◦f 2,... )×id�

)−1
(C′)

= 1(
(g◦f,g◦f 2,... )×id�

)
◦(f,g◦f )∈C′

= 1((g◦f 2,g◦f 3,... ),g◦f )∈C′ .

Thus, T (·,C) is measurable with respect to (g ◦f, g ◦f 2, . . . ).

2. Now we prove that σQ(T ) ⊇ σ(g ◦ f, g ◦ f 2, . . . ) by applying an
induction argument to show that σ(g ◦f k)⊆σQ(T ) for all k=1,2, . . . :

(a) “k = 1”: Let A be a (g ◦ f )-measurable set. Then there exists a
measurable set B ∈D with A= (g ◦f )−1(B). From Q×B ∈σQ(T ), and

1A = 1g◦f∈B
= 1(f,g◦f )∈Q×B

= T (·,Q×B),

it follows that A is σQ(T )-measurable.

(b) “k→k+1”: We assume that σ(g ◦f k) is a σ -subalgebra of σQ(T ),
and we have to show that this is also true for σ(g ◦ f k+1). To this end,
we choose a measurable set A∈σ(g ◦f k+1). There exists a measurable set
B ∈D with A= (g ◦f k+1)−1(B), and we have

1A = 1g◦f k+1∈B
= 1f∈(g◦f k)−1(B)

= T (·, (g ◦f k)−1(B)×�) .



Reductions of Hidden Information Sources 675

This implies A∈σQ(T ), because according to the induction hypothesis (g ◦
f k)−1(B)∈σQ(T ).

Examples 4.3.

1. Complete Randomness. Consider a probability space (Q,Q,µ).
This defines the following generator [(Q,Q), T , (Q,Q)] which is com-
pletely random in the sense that the next internal state, which coincides
with the next output state, is independent of the current internal state:

T :Q× (Q⊗Q)→ [0,1],

and

T (x,A×B) :=µ(A∩B).

In this case

σQ(T )={∅,Q}.

In other words, as expected, the process has no memory. Only a single
internal event is required to generate the process µ⊗N and µ⊗N is the only
process in im(GT ).

2. Rotation of the unit circle. Consider the unit circle K={x∈C: |x|=
1} and its upper half A1={ei ϕ :ϕ∈ [0, π)} and its lower half A2={ei ϕ :ϕ∈
[π,2 π)}. With a number a ∈K, we construct the generator T according
to Theorem 4.2 using f (x)= a x and g(x)= k for x ∈Ak. There are two
qualitatively different cases:

(a) Assume that a is a root of unity. Then there is a natural number
p �=0 with ap=1. This implies f p= idK and, therefore,

σQ(T ) = σ(g ◦f, g ◦f 2, . . . )

= σ(g ◦f, g ◦f 2, . . . , g ◦f p−1).

Since g has just two different values, σQ(T ) is finite in this case and we
have an effective internal-event reduction.

(b) Assume that a is not a root of unity. Then σQ(T ) is the Borel
algebra of the unit circle, and we have no internal-event reduction.
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In addition to the reduction method given by Theorem 4.1, we now
consider another way to reduce the generator’s internal structure. Given
a generator [(Q,Q), T , (�,D)], we identify two elements x1, x2 ∈ Q if
T (x1, ·)= T (x2, ·). The equivalence class of x is denoted by [x]. Further-
more, we define

[Q] :={[x] :x ∈Q
}

and

[Q] :={A′ ⊆ [Q] : [·]−1(A′)∈Q}.

The σ -algebra [Q] is just the terminal algebra of the canonical projection
[·] :x �→ [x]. It is easy to see that the following transition kernel [T ] : [Q]×(
[Q]⊗D)→ [0,1] is well defined

[T ]([x],A′ ×B) :=T (x, [·]−1(A′)×B).

Theorem 4.4. (Internal-State Reduction). Let [(Q,Q), T , (�,D)] be
a generator. Then [([Q], [Q]), [T ], (�,D)] is a generator, which generates
the same set of processes in (�,D) as T , that is,

im(G[T ])= im(GT ).

Proof. We show that [T ] is a Markov transition kernel in two
stages.

1. We fix [x] and prove that [T ] ([x], ·) is a probability measure:

[T ]

(

[x],
∞⊎

n=1

Cn

)

= T

(

x,
(
[·]× id�

)−1

( ∞⊎

n=1

Cn

))

= T

(

x,

∞⊎

n=1

(
[·]× id�

)−1
(Cn)

)

=
∞∑

n=1

T
(
x,
(
[·]× id�

)−1
(Cn)

)

=
∞∑

n=1

[T ]
(
[x],Cn

)
,
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and

[T ] ([x], [Q]×�) = T
(
x,
(
[·]× id�

)−1([Q]×�
))

= T (x,Q×�)

= 1.

2. Now we fix C∈ [Q]⊗D and prove that [T ](·,C) is [Q]-measurable.
To this end, it is sufficient to prove that for all ε with 0 � ε � 1, the set
{[T ](·,C)�ε} is an element of [Q] or equivalently [·]−1

({[T ](·,C)�ε})∈Q.
This is shown as follows.

[·]−1({[T ](·, C)� ε})

= [·]−1({[x]∈ [Q] :T ′([x],C)� ε})

= {x ∈Q : [T ]([x],C)� ε}
=
{
x ∈Q :T

(
x,
(
[·]× id�

)−1
(C)

)
� ε

}

∈ Q.

Combining the reduction methods provided by Theorems 4.1 and 4.4,
we can reduce every generator to a minimal generator. This statement is
specified in the following theorem.

Theorem 4.5. (Solution of Problem 2.4). Let [(Q,Q), T , (�,D)] be
a generator, and let [(Q′,Q′), T ′, (�,D)] be the generator obtained from
T by applying first the reduction method of Theorem 4.1 and then the
method of Theorem 4.4. Then T ′ satisfies

im(GT ′)= im(GT )

and is minimal in the sense that given another generator [(Q′′,Q′′), T ′′,
(�,D)] with im(GT ′′)= im(GT ′), every transition-preserving map f from
T ′ to T ′′ is injective.

Proof. Again there are two steps.

1. We prove

σ(f ◦ [·])=σQ(T ). (10)
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(a) “⊆”: This inclusion follows directly from the measurability of

(Q,Q)
idQ−→ (Q,σQ(T ))

[·]−→ ([Q], [σQ(T )])= (Q′,Q′)
f−→ (Q′′,Q′′).

(b) “⊇”: Let C ∈σ(f ◦ [·])⊗D. We prove that T (·,C) is (f ◦ [·])-mea-
surable, from which σQ(T )⊆σ(f ◦ [·]) follows, because σQ(T ) is the small-
est σ -algebra with that invariance property: From

σ(f ◦ [·])⊗D = σ(f ◦ [·])⊗σ(id�)

= σ
(
(f ◦ [·])× id�

)
,

it follows that there exists C′′ ∈Q′′ ⊗D with

(
(f ◦ [·])× id�

)−1
(C′′)=C.

This implies the (f ◦ [·])-measurability of T (·,C):

T (x,C) = T
(
x,
(
(f ◦ [·])× id�

)−1
(C′′)

)

= T ′′
(
(f ◦ [·])(x),C′′

)

= (T ′′(·,C′′)◦ (f ◦ [·]))(x).

2. Using Eq. (10), we now prove that f is injective. Assume
f ([x1]) = f ([x2]) where [xi ] are equivalence classes in Q; that is,
[x1], [x2] ∈ [Q]. In order to prove injectivity of f , we have to show
[x1]= [x2]:

T̄ (x1,C) = T̄
(
x1,

(
(f ◦ [·])× id�

)−1
(C′′)

)

= T ′′(f ([x1]),C′′)
= T ′′(f ([x2]),C′′)
= T̄

(
x2,

(
(f ◦ [·])× id�

)−1
(C′′)

)

= T̄ (x2,C).
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Example 4.6. (Continuation of Examples 4.3).

1. Complete randomness. Applying the internal-state reduction leads
to an internal state space Q′ consisting of one point, namely Q′ ={Q}. The
reduced generator is then given by

T ′(x, {Q}×B)=µ(B).

2. Rotation of the unit circle

(a) Identifying points according to the internal-state reduction leads
to the grouping of all elements in a given atom of the finite σ -algebra
σQ(T ). Thus, in this case we have finite transition kernel T ′ resulting from
Theorem 4.5.

(b) In this case, the internal-state reduction leads to equivalence clas-
ses that consist of individual points, so that effectively there is no reduc-
tion.

As pointed out at the end of Section 2, our goals differ from those
underlying causal-state reduction in computational mechanics. Nonethe-
less, it is not hard to see the following close relationship: In the situation
of Theorem 4.2, identifying x1 and x2 if and only if GT (δx1)=GT (δx2)

is equivalent to the identification of x1 and x2 if and only if T (x1,C)=
T (x2,C) for all C ∈σQ(T ). The first identification leads to the analogs of
the causal states in computational mechanics and the second identification
is the one used in Theorem 4.5. For completeness, we conclude this section
with the proof of this relationship.

Corollary 4.7. Let [(Q,Q), T , (�,D)] be a generator as in Theorem
4.2, and let x1, x2 ∈Q. Then

GT (δx1)=GT (δx2)

is equivalent to

T (x1,C)=T (x2,C) for all C ∈σQ(T ).

Proof.

GT (δx1)=GT (δx2)

⇔ g
(
f k(x1)

)=g
(
f k(x2)

)

for all k=1,2, . . .
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⇔ 1(g◦f,g◦f 2,... )∈C′(x1)=1(g◦f,g◦f 2,... )∈C′(x2)

for all C′ ∈DN

⇔ T (x1,C)=T (x1,C)

for all C ∈σ {g ◦f, g ◦f 2, . . . }
⇔ T (x1,C)=T (x1,C)

for all C ∈σQ(T ) (Theorem 4.2).

5. DISCUSSION

After this long development, it will be helpful to discuss more infor-
mally what was achieved and how to interpret the results. We began
by characterizing the class of hidden information sources in a way that
respected the distinction between a source’s internal structure and its
observed process. That allowed us to define generators of stochastic
processes as Markov transition kernels and to state the problem of obser-
vationally equivalent generators. We then established how different gen-
erators can be mapped onto each other while maintaining equivalence
of the observed stochastic process. We showed that one can maximally
reduce the representation of a source’s generator under the same con-
straint. The reduction was achieved in two steps: first by internal-event
reduction which produced the smallest σ -algebra and the second by inter-
nal-state reduction which collapsed σ -algebra components redundant for
optimal prediction.

“Prediction” here refers to the hidden internal state and to the
observed state of the machine in the next time step. Within computa-
tional mechanics, however, predictions are made for the whole future of
the observed process, which seems more natural than trying to make pre-
dictions of the hidden states. For the class of generators that have the
structure of Theorem 4.2 it turns out that both approaches are equiva-
lent (see Corollary 4.7). We expect this equivalence to be valid for a larger
class of generators but leave this to future investigations.

One interpretation of these results is that the seemingly intractable
nonuniqueness of inferring models of hidden information sources can be
directly addressed. There are more constraints on one’s choice of repre-
sentation than one thinks, at first blush. The new reductions and their
sometimes-equivalence to ε-machine representations suggest that there
might be a preferred minimal representation of general stochastic pro-
cesses – the ε-machine or some generalization of it. Even if these min-
imal models are unachievable when inferring from finite data, they are,
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nevertheless, the goal toward which modeling should strive. We hoped to
show, and partly illustrated this by the examples, that the new formula-
tions of reductions and their relationship to causal-state reduction greatly
extends the class of processes to which computational mechanics can be
applied.

6. APPLICATION AREAS

The developments here properly lie in the domains of measure theory
and stochastic processes. However, we believe the results on reductions
are relevant to a number of areas outside of those fields. To empha-
size this, and also to suggest possible directions for future work, we
shall point out the similarities with some areas and possible applica-
tions that would follow from the similarities. The areas considered are
not, by any means, exhaustive. The observations are intended only to be
suggestive.

Very generally, in statistical physics theories assume that a system
is Markovian.(28) There is, however, little concern about minimal repre-
sentations. One consequence of this is that one sees only an indirect
interest in calculating the structural and information-processing proper-
ties of physical systems. Historically, as reflected in the invention and
use of order parameters, structural aspects are what the theorist intro-
duces at the beginning of analysis. The difficulty that arises is that the
systems of genuine interest often produce “order” – behavior and struc-
ture – that is not directly determined by the fundamental equations of
motion, but only arises over long times and large spatial scales. In these
cases, one must adopt something like the inferential stance to discov-
ering the emergent order, rather than assume it at the outset. All of
which is to say that applying the reductions discussed here to problems
in statistical mechanics should lead to novel and useful notions of struc-
ture and to quantitative methods for measuring degrees of structured-
ness.

In communication theory hidden information sources are called chan-
nels.(18) Overwhelmingly, the cases that are considered and analyzed and
that, more importantly, are the basis for the central results of informa-
tion theory assume channels with no memory.(29) Here, though, in effect
we addressed channels with memory in the sense that the output sym-
bols were not in one-to-one relationship to the channel’s internal states.
Indeed, to the extent the set of causal states is nontrivial, one is con-
fronted with memoryful information sources. Looking forward, the results
on reductions should help in analyzing memoryful information sources
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and in quantitatively addressing the size of encoders and decoders under
fixed channel fidelity.

7. CONCLUSION

The process of model building is sometimes characterized as equiv-
alent to data compression. While this might be true from a pragmatic
engineering perspective, from the scientific, one must disagree. Model
building is much more than data compression, especially to the extent
that one attempts to explain and understand hidden structures and
mechanisms. (See, for example, the discussion in the last section of
ref. 30.)

Building a good model certainly helps with compressing the origi-
nal data, since the predictable components of a process that the model
captures can be used in encoding and decoding to send only the “ran-
dom” portions. However, the goal of modeling in the sciences is under-
standing the (possibly hidden) mechanisms and structures – elements that
help explain observed phenomena and lead to new insights about how
nature organizes itself. In this, minimal models – the theme of the pres-
ent work – play a particularly important role. Not only do small models
make for more tractable analysis and manipulation, they express how a
process is structured and, in this, they allow for improved scientific under-
standing.

Here we addressed the Forward Modeling Problem of maximally
reducing a given generator while keeping the observed process unchanged.
Future work will focus on the Reverse Modeling Problem, the goal of
which is to construct a minimal generator based on a distribution of mea-
surement sequences alone. We envision a two-step approach. In the first,
one constructs a possibly large but sufficient generator that, in the sec-
ond step, is reduced using the results developed above. Unfortunately, the
problem of ambiguity arises at the end of this procedure. From previous
work in computational mechanics, however, we expect uniqueness of min-
imal generators up to isomorphism.
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